Channel coding Definition

Channel coding Definition

 

A coding technique is described which improves error performance of synchronous data links without sacrificing data rate or requiring more bandwidth. This is achieved by channel coding with expanded sets of multilevel/phase signals in a manner which increases free Euclidean distance. Soft maximum–likelihood (ML) decoding using the Viterbi algorithm is assumed. Following a discussion of channel capacity, simple hand-designed trellis codes are presented for 8 phase-shift keying (PSK) and 16 quadrature amplitude-shift keying (QASK) modulation. These simple codes achieve coding gains in the order of 3-4 dB. It is then shown that the codes can be interpreted as binary convolutional codes with a mapping of coded bits into channel signals, which we call “mapping by set partitioning.” Based on a new distance measure between binary code sequences which efficiently lower-bounds the Euclidean distance between the corresponding channel signal sequences, a search procedure for more powerful codes is developed. Codes with coding gains up to 6 dB are obtained for a variety of multilevel/phase modulation schemes. Simulation results are presented and an example of carrier-phase tracking is discussed.

 

In digital communications, a channel code is a broadly used term mostly referring to the forward error correction code and bit interleaving in communication and storage where the communication media or storage media is viewed as a channel. The channel code is used to protect data sent over it for storage or retrieval even in the presence of noise (errors).

Sometimes channel coding also refers to other physical layer issues such as digital modulation, line coding, clock recovery, pulse shaping, channel equalization, bit synchronization, training sequences, etc.

Channel coding is distinguished from source coding, i.e., digitalization of analog message signals and data compression.

The theory behind designing and analyzing channel codes is called noisy channel coding theorem

Leave a Comment